Гармонические колебания. Циклическая частота – что и как? Циклическая частота формула

Гармонические колебания. Циклическая частота – что и как? Циклическая частота формула
Гармонические колебания. Циклическая частота – что и как? Циклическая частота формула

6.Колебания

6.1.Основные понятия и законы

Движение называется периодическим , если

x(t) = x(t + T ) , где T

Колебание

периодическое

движение

положения равновесия. На рис.6.1 в

качестве

изображены

периодические

негармонические

колебания

положения

равновесия

x 0 = 0.

Период T – это время, за

совершается

колебание.

колебаний в единицу времени

Круговая (циклическая) частота

ω= 2 πν =

Гармоническими

называются колебания, при которых смещение

от положения равновесия в зависимости от времени

изменяется по закону синуса или косинуса

x = A sin (ω0 t + α)

где A

амплитуда колебаний (максимальное смещение точки от

положения равновесия), ω 0 - круговая частота гармонических колебаний, ω 0 t + α - фаза, α - начальная фаза (при t = 0).

Система, совершающая гармонические колебания, называется

классическим гармоническим осциллятором или колебательной

системой.

Скорость

и ускорение

гармонических колебаниях

изменяются по законам

X = A ω0 cos (ω0 t + α) ,

d 2 x

= −A ω0 sin (ω0 t + α) .

Из соотношений (6.6) и (6.4) получим

a = −ω 2 x ,

откуда следует, что при гармонических колебаниях ускорение прямо пропорционально смещению точки от положения равновесия и направлено противоположно смещению.

Из уравнений (6,6), (6,7) получим

+ ω0 x = 0 .

Уравнение (6.8) называется дифференциальным уравнением гармонических колебаний, а (6.4) является его решением. Подставив

(6.7) во второй закон Ньютона F = ma r , получим силу, под действием которой происходят гармонические колебания

Эта сила, прямо пропорциональная смещению точки от положения равновесия и направленная противоположно смещению, называется возвращающей силой, k называется коэффициентом возвращающей силы . Таким свойством обладает сила упругости . Силы другой физической природы, подчиняющиеся закону (6.11),

называются квазиупругими.

Колебания, происходящие под действием сил, обладающих

свойством

называются

собственными

(свободными

гармоническими) колебаниями.

Из соотношений (6.3),(6.10) получим круговую частоту и период

этих колебаний

T = 2 π

При гармонических колебаниях по закону (6.4) зависимости кинетической и потенциальной энергии от времени имеют вид

mA2 ω 0

cos 2 (ω t + α) ,

mA2 ω 0

sin 2 (ω t + α) .

Полная энергия в процессе гармонических колебаний сохраняется

EK + U = const .

Подставляя в (6.15) выражения (6.4) и (6.5) для x и v , получим

E = E K max = U max

mA2 ω 2

Примером классического

гармонического

осциллятора является легкая пружина, к которой

подвешен груз массой m

(рис.6.2). Коэффициент

возвращающей силы k называется коэффициентом

жесткости пружины.

Из второго закона Ньютона

для груза

на пружине

– kx получим

уравнение,

совпадающее

дифференциальным

уравнением

гармонических

колебаний (6.8) Следовательно, груз на пружине

при отсутствии сил сопротивления среды будет

совершать гармонические колебания (6.4).

Гармонические

колебания

представить в виде проекции на оси координат вектора, величина которого равна амплитуде A , вращающегося вокруг начала координат с угловой скоростью ω 0 . На этом представлении основан метод

векторных диаграмм сложения гармонических колебаний с

одинаковой частотой, происходящих по одной оси

x 1 = A 1 sin (ω t + ϕ 1 ) ,

x 2 = A 2 sin (ω t + ϕ 2 ) .

Амплитуда результирующего колебания определяется по

теореме косинусов

− 2 A A cos (ϕ −ϕ

Начальная фаза результирующего колебания ϕ

может быть

найдена из формулы

tg ϕ =

A 1 sin ϕ 1 + A 2 sin ϕ 2

A cosϕ + A cosϕ

При сложении однонаправленных колебаний с близкими

частотами ω 1 и ω 2

возникают биения , частота которых равна ω 1 − ω 2 .

Уравнение траектории точки, участвующей в двух взаимно перпендикулярных колебаниях

x = A 1 sin ((ω t + ϕ 1 ) ) , (6.20) y = A 2 sin ω t + ϕ 2

имеет вид

− 2

cos (ϕ −ϕ

) = sin 2 (ϕ

−ϕ ) .

Если начальные фазы ϕ 1 = ϕ 2 , то уравнение траектории – прямая

x , или y = −

ϕ = ϕ1 − ϕ2 = π 2 ,

разность

точка движется по эллипсу

Физический маятник – это твердое тело,

способное

совершать

колебания

закрепленной оси, проходящей через точку

совпадающую

(рис.6.3). Колебания являются гармоническими

при малых углах отклонения.

Момент силы тяжести относительно оси,

проходящей

является

возвращающим

моментом

выражается

соотношением

M = mgd sin

ϕ ≈ mgd ϕ.

Основное уравнение динамики вращательного движения имеет вид (см. формулу (4.18))

M = I ε , (6.23)

где I - момент инерции маятника относительно оси, проходящей через точку О , ε - угловое ускорение.

Из (6.23), (6.22) получим дифференциальное уравнение гармонических колебаний физического маятника

d 2 ϕ

ϕ = 0 .

Его решения ϕ = ϕ 0 sin ω 0 t ,

mgd .

Из (6.3) получим формулу периода колебаний физического маятника

T = 2 π I .

M = − c ϕ .

Коэффициент возвращающего момента зависит от материала проволоки и ее размеров

где G - модуль сдвига, характеризующий упругие свойства материала, r - радиус проволоки, L - ее длина.

Основное уравнение динамики вращательного

движения имеетr вид

Его решение имеет вид ϕ = ϕ 0 sin (ω 0 t + α ) ,

где ϕ - угловое смещение от положения равновесия, ϕ 0 – амплитуда

колебаний.

Сравнив уравнения (6.8) и (6.32), получим значения угловой частоты и периода крутильных колебаний

T = 2 π

Свободные колебания становятся затухающими из-за наличия сил сопротивления. Например, когда материальная точка колеблется в вязкой среде, при малых скоростях на нее действует сила

сопротивления

r - коэффициент

среды F сопр = − rv

= −rx ,

сопротивления среды. Поэтому из второго закона Ньютона

mx = − kx − rx

получим дифференциальное уравнение затухающих колебаний

M x + m x = 0 .

Его решение для случая, когда

имеет вид

x = A e−β t

sin(ω t + α ) ,

Угловая частота выражается в радианах в секунду , её размерность обратна размерности времени (радианы безразмерны). Угловая частота является производной по времени от фазы колебания:

Угловая частота в радианах в секунду выражается через частоту f (выражаемую в оборотах в секунду или колебаниях в секунду), как

В случае использования в качестве единицы угловой частоты градусов в секунду связь с обычной частотой будет следующей:

Наконец, при использовании оборотов в секунду угловая частота совпадает с частотой вращения:

Введение циклической частоты (в её основной размерности - радианах в секунду) позволяет упростить многие формулы в теоретической физике и электронике. Так, резонансная циклическая частота колебательного LC-контура равна тогда как обычная резонансная частота . В то же время ряд других формул усложняется. Решающим соображением в пользу циклической частоты стало то, что множители и , появляющиеся во многих формулах при использовании радианов для измерения углов и фаз, исчезают при введении циклической частоты.

См. также

Wikimedia Foundation . 2010 .

  • Циклитирас Константинос
  • Циклическая последовательность

Смотреть что такое "Циклическая частота" в других словарях:

    циклическая частота - kampinis dažnis statusas T sritis fizika atitikmenys: angl. angular frequency; cyclic frequency; radian frequency vok. Kreisfrequenz, f; Winkelfrequenz, f rus. круговая частота, f; угловая частота, f; циклическая частота, f pranc. fréquence… … Fizikos terminų žodynas

    ЦИКЛИЧЕСКАЯ ЧАСТОТА - то же, что угловая частота … Большой энциклопедический политехнический словарь

    Частота периодического процесса

    Частота ядра - Частота физическая величина, характеристика периодического процесса, равная числу полных циклов, совершённых за единицу времени. Стандартные обозначения в формулах, или. Единицей частоты в Международной системе единиц (СИ) в общем случае… … Википедия

    Частота - У этого термина существуют и другие значения, см. Частота (значения). Частота Единицы измерения СИ Гц Чaстота физическая в … Википедия

    ЧАСТОТА - (1) количество повторений периодического явления за единицу времени; (2) Ч. боковая частота, большая или меньшая несущей частоты высокочастотного генератора, возникающая при (см.); (3) Ч. вращения величина, равная отношению числа оборотов… … Большая политехническая энциклопедия

    циклическая инвентаризация Справочник технического переводчика

    Частота - колебаний, количество полных периодов (циклов) колебательного процесса, протекающих в единицу времени. Единицей частоты является герц (Гц), соответствующий одному полному циклу в 1 с. Частота f=1/T, где T период колебаний, однако часто… … Иллюстрированный энциклопедический словарь

    Циклическая инвентаризация (CYCLE COUNT) - Метод точной ревизии наличных складских запасов, когда запасы инвентаризуются периодически по циклическому графику, а не раз в год. Циклическая инвентаризация складских запасов обычно производится на регулярной основе (как правило, чаще для… … Словарь терминов по управленческому учету

    Угловая частота - Размерность T −1 Единицы измерения … Википедия

Колебания - повторяющийся в той или иной степени во времени процесс изменения состояний системы около точки равновесия.

Гармоническое колебание - колебания, при которых физическая (или любая другая) величина изменяется с течением времени по синусоидальному или косинусоидальному закону. Кинематическое уравнение гармонических колебаний имеет вид

где х - смещение (отклонение) колеблющейся точки от положения равновесия в момент времени t; А - амплитуда колебаний, это величина, определяющая максимальное отклонение колеблющейся точки от положения равновесия; ω - циклическая частота, величина, показывающая число полных колебаний происходящих в течение 2π секунд - полная фаза колебаний, 0- начальная фаза колебаний.

Амплитуда - максимальное значение смещения или изменения переменной величины от среднего значения при колебательном или волновом движении.

Амплитуда и начальная фаза колебаний определяется начальными условиями движения, т.е. положением и скоростью материальной точки в момент t=0.

Обобщенное гармоническое колебание в дифференциальном виде

амплитуда звуковых волн и аудиосигналов обычно относится к амплитуде давления воздуха в волне, но иногда описывается как амплитуда смещения относительно равновесия (воздуха или диафрагмы говорящего)

Чaстота - физическая величина, характеристика периодического процесса, равная числу полных циклов процесса, совершённых за единицу времени. Частота колебаний в звуковых волнах определяется частотой колебаний источника. Колебания высокой частоты затухают быстрее низкочастотных.

Величина, обратная частоте колебаний называется периодом Т.

Период колебаний- длительность одного полного цикла колебаний.

В системе координат из точки 0 проведём вектор А̅, проекция которого на ось ОХ равна Аcosϕ. Если вектор А̅ будет равномерно вращаться с угловой скоростью ω˳ против часовой стрелки, то ϕ=ω˳t +ϕ˳, где ϕ˳ начальное значение ϕ(фазы колебаний), то амплитуда колебаний есть модуль равномерно вращающегося вектора А̅, фаза колебаний (ϕ)- угол между вектором А̅ и осью ОХ, начальная фаза(ϕ˳) -начальное значение этого угла, угловая частота колебаний(ω) – угловая скорость вращения вектора А̅..

2. Характеристики волновых процессов: фронт волны, луч, скорость волны, длина волны . Продольные и поперечные волны; примеры.

Поверхность, разделяющая в данный момент времени уже охваченную и ещё не охваченную колебаниями среду,называется фронт волны. Во всех точках такой поверхности после ухода фронта волны устанавливаются колебания,одинаковые по фазе.


Луч-это перпендикуляр к фронту волны. Акустические лучи, подобно световым, прямолинейны в однородной среде. Отражаются и преломляются на границе раздела 2-х сред.

Длина волны- расстояние между двумя ближайшими друг к другу точками, колеблющимися в одинаковых фазах, обычно длина волны обозначается греческой буквой . По аналогии с волнами, возникающими в воде от брошенного камня, длиной волны является расстояние между двумя соседними гребнями волны. Одна из основных характеристик колебаний. Измеряется в единицах расстояния (метры, сантиметры и т. п.)

  • продольные волны (волны сжатия, P-волны) - частицы среды колеблются параллельно (по) направлению распространения волны (как, например, в случае распространения звука);
  • поперечные волны (волны сдвига, S-волны) - частицы среды колеблются перпендикулярно направлению распространения волны (электромагнитные волны, волны на поверхностях разделения сред);

Угловая частота колебаний(ω) – угловая скорость вращения вектора А̅(Ѵ), смещение х колеблющейся точки – проекция вектора А̅ на ось ОХ.

Ѵ=dx/dt=-Aω˳sin(ω˳t+ϕ˳)=-Ѵmsin(ω˳t+ϕ˳),гдеVm=Аω˳ ―максимальная скорость (амплитуда скорости)

3. Свободные и вынужденные колебания. Собственная частота колебаний системы. Явление резонанса. Примеры.

Свободными (собственными) колебаниями называют такие, которые совершаются без внешних воздействий за счет первоначально полученной теплом энергии. Характерными моделями таких механических колебаний являются материальная точка на пружине (пружинный маятник) и материальная точка на нерастяжимой нити (математический маятник).

В этих примерах колебания возникают либо за счет первоначальной энергии (отклонение материальной точки от положения равновесия и движения без начальной скорости), либо за счет кинетической (телу сообщается скорость в начальном положении равновесия), либо за счет и той и другой энергии (сообщение скорости телу, отклоненному от положения равновесия).

Рассмотрим пружинный маятник. В положении равновесия упругая сила F1

уравновешивает силу тяжести mg . Если оттянуть пружину на расстояние x, то на материальную точку будет действовать большая упругая сила. Изменение значения упругой силы (F), согласно закону Гука, пропорционально изменению длины пружины или смещению x точки: F= - rx

Другой пример. Математический маятник отклонения от положения равновесия га такой небольшой угол α , чтобы можно было считать траекторию движения материальной точки прямой линией, совпадающей с осью OX. При этом выполняется приближенное равенство: α ≈sin α≈ tgα ≈x/L

Незатухающие колебания. Рассмотрим модель, в которой пренебрегают силой сопротивления.
Амплитуда и начальная фаза колебаний определяются начальными условиями движения, т.е. положением и скоростью материальной точки момент t=0.
Среди различных видов колебаний гармоническое колебание является наиболее простой формой.

Таким образом, материальная точка, подвешенная на пружине или нити, совершает гармонические колебания, если не учитывать силы сопротивления.

Период колебаний может быть найден из формулы: T=1/v=2П/ω0

Затухающие колебания. В реальном случае на колеблющееся тело действуют силы сопротивления (трения), характер движения изменяется, и колебание становится затухающим.

Применительно к одномерному движению последней формуле придадим следующий вид: Fс= - r * dx/dt

Быстрота убывания амплитуды колебаний определяется коэффициентом затухания: чем сильнее тормозящее действие среды, тем больше ß и тем быстрее уменьшается амплитуда. На практически, однако, степень затухания часто характеризуются логарифмическим декрементом затухания, понимая под эти величину, равную натуральному логарифму отношения двух последовательных амплитуд, разделенных интервалом времени, равным периоду колебаний следовательно, коэффициент затухания и логарифмический декремент затухания связаны достаточно простой зависимостью: λ=ßT

При сильном затухании из формулы видно, что период колебания является мнимой величиной. Движение в этом случае уже не будет периодическим и называется апериодическим.

Вынужденные колебания. Вынужденными колебаниями называются колебания, возникающие в системе при участии внешней силы, изменяющейся по периодическому закону.

Предположим, что на материальную точку, кроме упругой силы и силы трения, действует внешняя вынуждающая сила F=F0 cos ωt

Амплитуда вынужденного колебания прямо пропорциональна амплитуде вынуждающей силы и имеет сложную зависимость от коэффициента затухания среды и круговых частот собственного и вынужденного колебаний. Если ω0 и ß для системы заданы, то амплитуда вынужденных колебаний имеет максимальное значение при некоторой определенной частоте вынуждающей силы, называемой резонансной Само явление – достижение максимальной амплитуды вынужденных колебаний для заданных ω0 и ß – называют резонансом.

Резонансную круговую частоту можно найти из условия минимума знаменателя в: ωрез=√ωₒ- 2ß

Механический резонанс сожжет быть как полезным, так и вредным явлением. Вредное действие связано главным образом с разрушение, которое он может вызывать. Так, в технике, учитывая разные вибрации, необходимо предусматривать возможное возникновение резонансных условий, в противном случае могут быть разрушения и катастрофы. Тела обычно имеют несколько собственных частот колебаний и соответственно несколько резонансных частот.

Резонансные явления при действии внешних механических колебаний происходят во внутренних органах. В этом, видимо, одна из причин отрицательного воздействия инфразвуковых колебаний и вибраций на организм человека.

6.Звуковые методы исследования в медицине: перкуссия, аускультация. Фонокардиография.

Звук может быть источником информации о состоянии внутренних органов человека, поэтому в медицине хорошо распространены такие методы изучения состояния пациента, как аускультация, перкуссия и фонокардиография

Аускультация

Для аускультация используют стетоскоп или фонендоскоп. Фонендоскоп состоит из полой капсулы с передающей звук мембраной, прикладываемой к телу больного, от нее идут резиновые трубки к уху врача. В капсуле возникает резонанс столба воздуха, вследствие чего усиливается звучание и улучшается аускультация. При аускультации легких выслушивают дыхательные шумы, разные хрипы, характерные для заболеваний. Также можно прослушивать сердце, кишечник и желудок.

Перкуссия

В этом методе выслушивают звучание отдельных частей тела при простукивании их. Представим замкнутую полость внутри какого-нибудь тела, заполненную воздухом. Если вызвать в этом теле звуковые колебания, то при определенной частоте звука воздух в полости начнет резонировать, выделяя и усиливая тон,соответствующий размеру и положению полости. Тело человека можно представить как совокупность газонаполненных(легкие) , жидких(внутренние органы) и твердых(кости) объемов. При ударе по поверхности тела возникают колебания, частоты которых имеют широкий диапазон. Из этого диапазона одни колебания погаснут довольно быстро, другие же, совпадающие с собственными колебаниями пустот, усилятся и вследствие резонанса будут слышимы.

Фонокардиография

Применяется для диагностики состояния сердечной деятельности. Метод заключается в графической регистрации тонов и шумов сердца и их диагностической интерпретации. Фонокардиограф состоит из микрофона, усилителя, системы частотных фильтров и регистрирующего устройства.

9. Ультразвуковые методы исследования (УЗИ) в медицинской диагностике.

1) Методы диагностики и исследования

Относят локационные методы с использованием главным образом импульсивного излучения. Это эхоэнцефалография – определение опухолей и отека головного мозга. Ультразвуковая кардиография – измерение размеров сердца в динамике; в офтальмологии – ультразвуковая локация для определения размеров глазных сред.

2)Методы воздействия

Ультразвуковая физиотерапия – механическое и тепловое воздействие на ткань.

11. Ударная волна. Получение и использование ударных волн в медицине.
Ударная волна – поверхность разрыва, которая движется относительно газа и при пересечении которой давление, плотность, температура и скорость испытывают скачок.
При больших возмущениях (взрыв, сверхзвуковое движение тел, мощный электрический разряд и т.п.) скорость колеблющихся частиц среды может стать сравнимой со скоростью звука, возникает ударнаяволна .

Ударная волна может обладать значительной энергией , так, при ядерном взрыве на образование ударной волны в окружающей среде затрачивается около 50% энергии взрыва. Поэтому ударная волна, достигая биологических и технических объектов, способна причинить смерть, увечья и разрушения.

В медицинской технике используются ударные волны , представляющие собой чрезвычайно короткий, мощный импульс давления с высокими амплитудами давления и малой компонентой растяжения. Они генерируются вне тела пациента и передаются вглубь тела, производя терапевтический эффект, предусмотренный специализацией модели оборудования: дробление мочевых камней, лечение болевых зон и последствий травм опорно-двигательного аппарата, стимуляцию восстановления сердечной мышцы после инфаркта миокарда, разглаживание целлюлитных образований и т. д.

Всё на планете имеет свою частоту. Согласно одной из версий, она даже положена в основу нашего мира. Увы, теория весьма сложна, чтобы излагать её в рамках одной публикации, поэтому нами будет рассмотрена исключительно частота колебаний как самостоятельное действие. В рамках статьи будет дано определения этому физическому процессу, его единицам измерений и метрологической составляющей. И под конец будет рассмотрен пример важности в обычной жизни обыкновенного звука. Мы узнаем, что он собой представляет и какова его природа.

Что называют частотой колебаний?

Под этим подразумевают физическую величину, которая используется для характеристики периодического процесса, что равен количеству повторений или возникновений определённых событий за одну единицу времени. Этот показатель рассчитывается как отношение числа данных происшествий к промежутку времени, за который они были совершены. Собственная частота колебаний есть у каждого элемента мира. Тело, атом, дорожный мост, поезд, самолёт - все они совершают определённые движения, которые так называются. Пускай эти процессы не видны глазу, они есть. Единицами измерений, в которых считается частота колебаний, являются герцы. Своё название они получили в честь физика немецкого происхождения Генриха Герца.

Мгновенная частота

Периодический сигнал можно охарактеризовать мгновенной частотой, которая с точностью до коэффициента является скоростью изменения фазы. Его можно представить как сумму гармонических спектральных составляющих, обладающих своими постоянными колебаниями.

Циклическая частота колебаний

Её удобно применять в теоретической физике, особенно в разделе про электромагнетизм. Циклическая частота (её также называют радиальной, круговой, угловой) - это физическая величина, которая используется для обозначения интенсивности происхождения колебательного или вращательного движения. Первая выражается в оборотах или колебаниях на секунду. При вращательном движении частота равняется модулю вектора угловой скорости.

Выражение этого показателя осуществляется в радианах на одну секунду. Размерность циклической частоты является обратной времени. В числовом выражении она равняется числу колебаний или оборотов, что произошли за количество секунд 2π. Её введения для использования позволяет значительно упрощать различный спектр формул в электронике и теоретической физике. Самый популярный пример использования - это обсчёт резонансной циклической частоты колебательного LC-контура. Другие формулы могут значительно усложняться.

Частота дискретных событий

Под этой величиной подразумевают значение, что равно числу дискретных событий, которые происходят за одну единицу времени. В теории обычно используется показатель - секунда в минус первой степени. На практике, чтобы выразить частоту импульсов, обычно применяют герц.

Частота вращения

Под нею понимают физическую величину, которая равняется числу полных оборотов, что происходят за одну единицу времени. Здесь также применяется показатель - секунда в минус первой степени. Для обозначения сделанной работы могут использовать такие словосочетания, как оборот в минуту, час, день, месяц, год и другие.

Единицы измерения

В чём же измеряется частота колебаний? Если брать во внимание систему СИ, то здесь единица измерения - это герц. Первоначально она была введена международной электротехнической комиссией ещё в 1930 году. А 11-я генеральная конференция по весам и мерам в 1960-м закрепила употребление этого показателя как единицы СИ. Что было выдвинуто в качестве «идеала»? Им выступила частота, когда один цикл совершается за одну секунду.

Но что делать с производством? Для них были закреплены произвольные значения: килоцикл, мегацикл в секунду и так далее. Поэтому беря в руки устройство, которое работает с показателем в ГГц (как процессор компьютера), можете примерно представить, сколько действий оно совершает. Казалось бы, как медленно для человека тянется время. Но техника за тот же промежуток успевает выполнять миллионы и даже миллиарды операций в секунду. За один час компьютер делает уже столько действий, что большинство людей даже не смогут представить их в численном выражении.

Метрологические аспекты

Частота колебаний нашла своё применение даже в метрологии. Различные устройства имеют много функций:

  1. Измеряют частоту импульсов. Они представлены электронно-счётными и конденсаторными типами.
  2. Определяют частоту спектральных составляющих. Существуют гетеродинные и резонансные типы.
  3. Производят анализ спектра.
  4. Воспроизводят необходимую частоту с заданной точностью. При этом могут применяться различные меры: стандарты, синтезаторы, генераторы сигналов и другая техника этого направления.
  5. Сравнивают показатели полученных колебаний, в этих целях используют компаратор или осциллограф.

Пример работы: звук

Всё выше написанное может быть довольно сложным для понимания, поскольку нами использовался сухой язык физики. Чтобы осознать приведённую информацию, можно привести пример. В нём всё будет детально расписано, основываясь на анализе случаев из современной жизни. Для этого рассмотрим самый известный пример колебаний - звук. Его свойства, а также особенности осуществления механических упругих колебаний в среде, находятся в прямой зависимости от частоты.

Человеческие органы слуха могут улавливать колебания, которые находятся в рамках от 20 Гц до 20 кГц. Причём с возрастом верхняя граница будет постепенно снижаться. Если частота колебаний звука упадёт ниже показателя в 20 Гц (что соответствует ми субконтроктавы), то будет создаваться инфразвук. Этот тип, который в большинстве случаев не слышен нам, люди всё же могут ощущать осязательно. При превышении границы в 20 килогерц генерируются колебания, которые называются ультразвуком. Если частота превысит 1 ГГц, то в этом случае мы будем иметь дело с гиперзвуком. Если рассматривать такой музыкальный инструмент, как фортепиано, то он может создавать колебания в диапазоне от 27,5 Гц до 4186 Гц. При этом следует учитывать, что музыкальный звук не состоит только из основной частоты - к нему ещё примешиваются обертоны, гармоники. Это всё вместе определяет тембр.

Заключение

Как вы имели возможность узнать, частота колебаний является чрезвычайно важной составляющей, которая позволяет функционировать нашему миру. Благодаря ей мы можем слышать, с её содействия работают компьютеры и осуществляется множество других полезных вещей. Но если частота колебаний превысит оптимальный предел, то могут начаться определённые разрушения. Так, если повлиять на процессор, чтобы его кристалл работал с вдвое большими показателями, то он быстро выйдет из строя.

Подобное можно привести и с человеческой жизнью, когда при высокой частотности у него лопнут барабанные перепонки. Также произойдут другие негативные изменения с телом, которые повлекут за собой определённые проблемы, вплоть до смертельного исхода. Причём из-за особенности физической природы этот процесс растянется на довольно длительный промежуток времени. Кстати, беря во внимание этот фактор, военные рассматривают новые возможности для разработки вооружения будущего.

Определение

Мерой колебательного движения служит циклическая (или угловая, или круговая) частотой колебаний .

Это скалярная физическая величина.

Циклическая частота при гармонических колебаниях

Пусть колебания совершает материальная точка. При этом материальная точка через равные промежутки времени проходит через одно и то же положение.

Самыми простыми колебаниями являются гармонические колебания. Рассмотрим следующую кинематическую модель. Точка M с постоянной по модулю скоростью ($v$) движется по окружности радиуса A. В этом случае ее угловую скорость обозначим ${\omega }_0$, эта скорость постоянна (рис.1).

Проекция точки $M$ на диаметр окружности (точка $N$), на ось X, выполняет колебания от $N_1$ до $N_2\ $и обратно. Такое колебание N ,будет гармоническим. Для описания колебания точки N необходимо записать координату точки N, как функцию от времени ($t$). Пусть при $t=0$ радиус OM образует с осью X угол ${\varphi }_0$. Через некоторый промежуток времени этот угол изменится на величину ${\omega }_0t$ и будет равен ${\omega }_0t+{\varphi }_0$, тогда:

Выражение (1) является аналитической формой записи гармонического колебания точки N по диаметру $N_1N_2$.

Обратимся к выражению (1). Величина $A$ - это максимальное отклонение точки, совершающей колебания, от положения равновесия (точки О - центра окружности), называется амплитудой колебаний.

Параметр ${\omega }_0$ - циклическая частота колебаний. $\varphi =({\omega }_0t+{\varphi }_0$) - фаза колебаний; ${\varphi }_0$ - начальная фаза колебаний.

Циклическую частоту гармонических колебаний можно определить как частную производную от фазы колебаний по времени:

\[{\omega }_0=\frac{?\varphi }{\partial t}=\dot{\varphi }\left(2\right).\]

При ${\varphi }_0=0$, уравнение колебаний (1) преобразуется к виду:

Если начальная фаза колебаний равна ${\varphi }_0=\frac{\pi }{2}$ , то получим уравнение колебаний в виде:

Выражения (3) и (4) показывают, что при гармонических колебаниях абсцисса $x$ - это функция синус или косинус от времени. При графическом изображении гармонических колебаний получается косинусоида или синусоида. Форма кривой определена амплитудой колебаний и величиной циклической частоты. Положение кривой зависит от начальной фазы.

Циклическую частоту колебаний можно выразить через период (T) колебаний:

\[{\omega }_0=\frac{2\pi }{T}\left(5\right).\]

Циклическую частоту с частотой $?$$?$ свяжем выражением:

\[{\omega }_0=2\pi \nu \ \left(6\right).\]

Единицей измерения циклической частоты в Международной системе единиц (СИ) является радиан, деленный на секунду:

\[\left[{\omega }_0\right]=\frac{рад}{с}.\]

Размерность циклической частоты:

\[{\dim \left({\omega }_0\right)=\frac{1}{t},\ }\]

где $t$ - время.

Частные случаи формул для вычисления циклической частоты

Груз на пружине (пружинный маятник - идеальная модель) совершает гармонические колебания с круговой частотой равной:

\[{\omega }_0=\sqrt{\frac{k}{m}}\left(7\right),\]

$k$ - коэффициент упругости пружины; $m$ - масса груза на пружине.

Малые колебания физического маятника будут приблизительно гармоническими колебаниями с циклической частотой равной:

\[{\omega }_0=\sqrt{\frac{mga}{J}}\left(8\right),\]

где $J$ - момент инерции маятника относительно оси вращения; $a$ - расстояние между центром масс маятника и точкой подвеса; $m$ - масса маятника.

Примером физического маятника является математический маятник. Круговая частота его колебаний равна:

\[{\omega }_0=\sqrt{\frac{g}{l}}\left(9\right),\]

где $l$ - длина подвеса.

Угловая частота затухающих колебаний находится как:

\[\omega =\sqrt{{\omega }^2_0-{\delta }^2}\left(10\right),\]

где $\delta $ - коэффициент затухания; в случае с затуханием колебаний ${\omega }_0$ называют собственной угловой частотой колебаний.

Примеры задач с решением

Пример 1

Задание: Чему равна циклическая частота гармонических колебаний, если максимальная скорость материальной точки равна ${\dot{x}}_{max}=10\ \frac{см}{с}$, а ее максимальное ускорение ${\ddot{x}}_{max}=100\ \frac{см}{с^2}$?

Решение: Основой решения задачи станет уравнение гармонических колебаний точки, так как из условий, очевидно, что они происходят по оси X:

Скорость колебаний найдем, используя уравнение (1.1) и кинематическую связь координаты $x$ и соответствующей компоненты скорости:

Максимальное значение скорости (амплитуда скорости) равна:

Ускорение точки вычислим как:

Из формулы (1.3) выразим амплитуду, подставим ее в (1.5), получим циклическую частоту:

\[{\dot{x}}_{max}=A{\omega }_0\to A=\frac{{\dot{x}}_{max}}{{\omega }_0};;\ {\ddot{x}}_{max}=A{щ_0}^2=\frac{{\dot{x}}_{max}}{щ_0}{щ_0}^2\to щ_0=\frac{{\ddot{x}}_{max}}{{\dot{x}}_{max}}.\]

Вычислим циклическую частоту:

\[щ_0=\frac{100}{10}=10(\frac{рад}{с}).\]

Ответ: $щ_0=10\frac{{\rm рад}}{{\rm с}}$

Пример 2

Задание: На длинном невесомом стержне закреплены два груза одинаковой массы. Один груз находится на середине стержня, другой на его конце (рис.2). Система совершает колебания около горизонтальной оси, проходящей через свободный конец стрежня. Какова циклическая частота колебаний? Длина стержня равна $l$.

Решение: Основой для решения задачи является формула нахождения частоты колебаний физического маятника:

\[{\omega }_0=\sqrt{\frac{mga}{J}}\left(2.1\right),\]

где $J$ - момент инерции маятника относительно оси вращения; $a$ - расстояние между центром масс маятника и точкой подвеса; $m$ - масса маятника. Масса маятника по условию задачи состоит из масс двух одинаковых шариков (масса одного шарика $\frac{m}{2}$). В нашем случае расстояние $a$ равно расстоянию между точками O и C (см. рис.2):

Найдем момент инерции системы из двух точечных масс. Относительно центра масс (если ось вращения провести через точку C), момент инерции системы ($J_0$) равен:

Момент инерции нашей системы относительно оси, проходящей через точку О найдем по теореме Штейнера:

Подставим правые части выражение (2.2) и (2.4) в (2.1) вместо соответствующих величин:

\[{\omega }_0=\sqrt{\frac{mg\frac{3}{4}l\ }{\frac{5}{8}ml^2}}=\sqrt{\frac{6g}{5l}}.\]

Ответ: ${\omega }_0=\sqrt{\frac{6g}{5l}}$